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Abstract 

The recently published tables of Clebsch-Gordan 
products are applied to derive the tensorial covariants 
(bases of irreducible or physically irreducible represen- 
tations) for the 32 crystal point groups. Tensors of the 
following intrinsic symmetries in Jahn notation are 
considered: e (pseudoscalar), V (polar vector), [V2], 
V[V2], [[V212], [V2] 2, e[V2], and eV[V2]. With this 
choice the most important tensors of optical and other 
properties are covered. Explicit lists of covariants in 
components of these tensors are given for the non- 
centrosymmetric groups; with the use of parity argu- 
ments the lists also apply to centrosymmetric groups. 
Applications, especially for phase transitions with 
reduction of the point symmetry, are briefly discussed. 

1. Introduction 

A vast number of original papers and books have 
already been devoted to practical calculation techni- 
ques and to the tabulation of material-property tensors 
for different magnetic and classical crystal symmetries. 
The form of the basic physical tensors in equilibrium 
has already been given for the 32 crystal point groups 
by Voigt (1910). The contemporary sources usually 
referenced for the equilibrium form of material- 
property tensors in the classical and magnetic sym- 
metry classes are Nye (1957) and Birss (1964). 
Zheludev (1964) found the form of the electrogyration 
tensor, Ranganath & Ramaseshan (1969) gave the 
tensor of elastogyration, and Smith (1970) tabulated 
the equilibrium tensors up to the eighth rank. A wide 
variety of tensor types and their physical interpretation 
are given by Sirotin & Shaskolskaya (1975). The 
history of calculation techniques, amongst which the 
'direct inspection method' and its modification (Fumi, 
1952a,b) are the most frequently used, can be traced 
from the referenced sources. 

The problem of determining the equilibrium form of 
a given tensor for a given symmetry group is only part 
of a more general task to decompose this tensor into 
bases of REP's (irreducible or physically irreducible 
representations) of the group in question. For example, 
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such bases have been dealt with by Fumi (1952c) who 
used them to determine, by subductions, the equili- 
brium form of tensors in subgroups.* Once the 
decomposition of a tensor is known we obtain the 
equilibrium form of a tensor immediately by equating 
to zero all noninvariant combinations of the tensor 
components. 

The decomposition of second-rank tensors was given 
by Callen (1968); some tensorial bases of higher rank 
were considered by Janovec, Dvo~fik & Petzelt (1975) 
and also by Zheludev (1976). An inspection of trans- 
formation properties or the use of projection operators 
are the methods usually referenced for achieving the 
decomposition and the bases are not always specified 
within the equivalence classes of REP's. As an algebraic 
problem of finite dimension, the decomposition can 
always be found in this or some other way. The theory 
of group representations provides, however, a system- 
atic method which utilizes the Clebsch-Gordan (CG) 
reduction. 

The CG reduction for the 32 crystal point groups is 
given by Koster, Dimmock, Wheeler & Statz (1963) 
via the CG coefficients. For practical calculations it is 
more convenient to use tables of the so-called 'CG 
products' (Kopsk~,, 1976a,b) which give directly the 
multiplication of bases in the form of bilinear functions. 
Here we shall apply these tables to derive the tensorial 
bases of the REP's (or, as we prefer to call them, the 
tensorial covariants) of the 32 crystal point groups for 
the main physical tensors up to the fourth rank. The 
choice of tabulated tensors was governed by a desire to 
cover all basic optical properties, and continuance to 
higher ranks, if desired, is straightforward. In the 
following paper (Kopsk~,, 1979a) we show how to extend 
these results in a simple way to all magnetic crystal 
point groups and to tensors involving magnetic pro- 
perties. 

The terminology which we use here has been described 
earlier (Kopsk~, 1976a). The term covariant, originally 
introduced in a similar context by Weyl (1946), means 

* We owe an apology to Professor Fumi for quoting this work as 
that of the 'direct inspection method' (Kopsk~,, 1976a). The paper 
actually deals with a subduction method which makes use of the 
fact that bases of REP's of a group are connected by subductions 
with bases of REP's of its subgroups. 

© 1979 International Union of Crystallography 



84 T E N S O R I A L  C O V A R I A N T S  FOR THE 32 CRYSTAL POINT GROUPS 

the same as the more customary symmetry-adapted 
basis. Covariants are, however, well defined math- 
ematical objects which form their own linear spaces - 
this, in my opinion, justifies the revival of Weyls term. 
The typification of bases, variables and covariants is 
introduced here for purposes of standardization - it is 
evidently an analogue of the symbolic method in the 
'old' theory of invariants (Weitzenb6ck, 1923). 

2. Covariants 

The equivalence classes of REP's  of a finite group G of 
order N are described by characters Z~ (G), a = 1, 2 . . . .  , 
x. In each class Z~ (G) we can choose one of the equiv- 
alent matrix REP's  F0, ~ (G)" g --, D ~'~) (g) by assigning 
to each element g of G a certain matrix D ~'~) (g) of the 
dimension d,~ = Z,~ (e). Let A(G): g --, A(g) be a represen- 
tation of G by linear operators A(g) which act on a 
carrier space L~ and let z(G) be the character of A(G). 
Then, it is possible to find such bases {%,,,it, a = 1, 2, 
.. . ,  x; a = 1, 2, ..., n,, = ( l /N)  ZgEGX(g) ~ (g); i = 1, 
2, . . . ,  d,~, of the space k,,, in which: 

A(g)%a,i = D}F) (g) eo, a,./. (1) 

The spaces kaa , spanned on {%a,i} (a, a fixed) are then 
invariant irreducible subspaces of L.. Any nonsingular 
(and unitary, if orthonormalization of bases is required) 
transformation ~: e' • = ~ "'~ ~at, e,~b,i leads to other ota, t b= 1 
bases l e~a , i }  satisfying (1) and to new invariant irre- 
ducible subspaces L" a of L.. 

The space L. with representation A(G) can be 
considered as a ground space which produces function- 
al or tensor spaces carrying new (functional or tensor) 
representations of G defined in an appropriate way. 
Thus, if f (x) or f ( x , y  . . . .  ) is a function of one or of 
several vectors x,y C L., we can define the action of 
elements g of G on the functions by: 

.~¢'(g)f(x) = f g ( X )  =f [A(g- l )x ] ,  (2a) 
o r  
~¢" (g)f (x ,  y , . . . )  = fg(X, y , . . . )  

= f [A(g-~)x,  A(g-~)y, ...]. (2b) 
This definition is common; the transformed functions f ,  
have the same values in the transformed vectors A(g)x 
as the original functions f i n  the original vectors x and 
operators ~¢'(g) form a representation ~/(G) of G. 

Particularly, the linear functions of vector x C L, 
form a linear space [n; one of the possible bases of ~_~ is 
given by the set of functions tp,~a,2 (x) = x,~a, i, where x 
= xo,,~.i%a,r Defining operators A(g) o n / , ,  by (2a), we 
obtain from (2) and (1): 

A(g)  ~0t~a,/(X ) = (%a,i[D~) (g---l) Xom,] Caa,kl 
= D!.~),j (g- l )  X,~a,./= I:) E~) (g) q~,~ , , , . / (x ) . ; ,  (3) 

The space [,,, representation ~,(G), matrices [3~'~)(g), 
and the bases {~0,~,,,i} are called adjoint to the space k., 
representation A(G), matrices Dt'~)(g), and bases 

{%a./}' respectively. An adjoint matrix 0 = (Dr) -1 = 
(D-l) t to a given matrix D is its reciprocal and 
transposed. In group representation theory we use 
ordinary unitary matrices; in this case the adjoint 
matrix [5 coincides with the conjugate complex D*. If 
the matrix is also real, i.e. orthogonal, then E) and D 
coincide. 

The functions ~0a.i ((.t, a fixed) again span invariant 
irreducible subspaces L,,a of [_,, and a nonsingular 

, Z , ~  r/,,o q9 b.i leadslto another transformation r/: ~0,~a,i= b= 1 
basis of / n, satisfying (3), and the primed functions 
span new invariant irreducible subspaces L'~ of the [,,. 
If, further, the matrix r/~ b is adjoint to the matrix ~ab, 
then the primed basis of [n is adjoint to the primed 
basis of L.. We say that functions which transform 
according to (3) form/'0,~ covariants. More rigorously, 
a definition of functional covariants is: A set ft~) = 
( f a P f a 2  . . . . .  f a d )  of functions f a i  is called a covariant 
to the REP/'0,~(G) of the group G, or simply a/'0,~ co- 
variant, if the functions f a i  are defined on a space k,, 
which carries an operator representation A(G) of G, if 
the action of J~c'(g) on f ,  for g E G, is defined by (2a) 
[or by (2b) for many argument functions], and if these 
functions transform among themselves according to: 

d (g) fai  = 0~.~. ) (g)f~], j, (4) 

where [3~") (g) are adjoint to matrices D (~') (g)OfFoa (G). 
With this definition, the functions ~o,,a.i form sets ~(a '~) 

= x(f ) = (X ,~a . ,X ,~a ,Z , . . . ,X ,~ , ,a )  -- the functions are 
written explicitly here - which ~tre the linear F0~ co- 
variants of L,,. 

The following terminology is convenient for the 
standardization and tabulation of reductions: let the set 
of chosen matrix REP's  Fo,~(G ) be a typical matrix 
representation F0(G ) of G and let x ~') = (x,,1, X,~z, ..., 
Xo, d.) be an abstract representative of F0, , covariants; 
x ~') is called the typical F0, , covariant and its com- 
ponents x,~ i are called the typical variables. The reduc- 
tions of A(G) and L, can be conveniently given as 
follows: 

FOc, ( X al ,  X a2, . . . ,  X ado) 

X] a) = ( X a l ,  l ,Xa l ,2 ,  . . .  , Xo~l ,d)  

X(2 O:) = ( X a 2 , 1 ,  Xot2, 2 . . . .  , Xa:2,dQ) 

x(. ~ = (X~.o . , ,x , . . ° ,2 ,  ...,x,,,o,d). 

To emphasize the fact that this reduction has a 
specific matrix form Fo~(G) for each REP, we should 
say that it is associated with a given typical representa- 
tion F0(G ). We shall for brevity drop this specification. 
Analogously we can tabulate the functional covariants. 

Covariants have the following useful properties. (i) A 
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linear combination of F0, ~ covariants is again a F0, ~ 
covariant. Hence F0, ~ covariants form linear spaces and 
it is possible to speak about bases of spaces of F0, ~ co- 
variants. (ii) If a certain linear relation holds between 
the j th  components of covariants, then the same linear 
relation holds between all remaining components and 
therefore between covariants as a whole• (iii) The linear 
envelope of components of a F0, ~ covariant forms an 
invariant irreducible space, which carries the REP of 
the class Z,~(G) - when components of the covariant are 
taken as a basis, this representation has the matrix form 
Fo,~(G ). (iv) Components of a covariant and compo- 
nents of two linearly independent (particularly those 
belonging to different REP's) covariants are linearly 
independent. 

The space L, is usually defined by a certain basis {eft 
in which A(G) is not reduced. The problem of finding 
the basis {e~,a.i} in which L, splits into invariant irre- 
ducible subspaces 1-~,, and A(G) is reduced to the 
particular matrix form /~0~(G) on each of L~a and the 
problem of finding n~ linearly independent linear F0, ~ 
covariants on L, to each F0,~(G ) are equivalent. Indeed, 
a vector x E 1-, can be expressed as either x = xjej or 
x = Xo, a. t%a. i ,  where %a. i = ~ ' =  l C(o,a. i l j e j a n d x a a ,  i = 
~ ' j=ld(~,a.ojxj  and the matrices c(,~a,~)y, d(,~a.i), i are 
mutually adjoint [(aa, i) are along the rows, j the 
columns of c, d]. The linear combinations x,~,,,i of 
original components x j  are precisely the components of 
n~ linear F0~ covariants _,,~'~). If we work with ortho- 

- d* • if the space L, is normal bases, then c~, , ,~) j -  ~,~a.0j, 
also real, then cc,~,~)j = d t ~  i)j" In both cases it is easy 
to read the bases {e,~a, i} t'rom the table of /'o,, co- 
variants. 

3. Spaces  o f  tensors  and o f  mult i l inear funct ions  - 
tensorial  covar iants  

The classical space of physical vectors is the three- 
dimensional space L 3 spanned on a standard Cartesian 
basis {e/}, i = x , y , z  (or, alternatively i = 1,2,3). The 
metric (e i. e~) = (~ij defines the scalar product. The full 
rotation group 0(3) leaves the scalar product invariant. 
The proper rotations of L 3 form a subgroup $0(3)  of 
0(3) and the elements of 50(3)  are specified by their 
orientation with respect to the Cartesian basis {ei} and 
by the rotation angle. The remaining elements of 0(3) 
are, in addition, combined with the space inversion i, 
which changes the signs of all three vectors e r Thus to 
each element g E 0(3) we assign a linear operator V(g), 
which acts on e~ according to: 

V ( g ) e i  : D j i ( g ) e j ,  (5)  

where D/i(g) are orthogonal matrices. The repre- 
sentation of 0(3) by operators V(g) is called the vector 
representation of 0(3). If we want to work further with 
absolutely irreducible representations (not with 
physically irreducible ones), it is necessary to consider 

I_ 3 as a space of vectors x ie  i with x i from the field of 
complex numbers. Then we can choose a basis [(e x + 
iey)/v/2, ez, (ex - iey)/x/2], in which the vector repre- 
sentation of $0(3)  will have the matrix form denoted 
usually as D (1) or, for the full group 0(3), as D ~1)-. 

Quite analogously to the previous section we define 
an adjoint to l_ 3 space E 3 of linear functions on 1_ 3. The 
adjoint basis to {ei} is then formed by the components 
{xi} and the adjoint vector representation of 0(3) by 
operators V(g) is, because of their orthogonality, 
expressed by the same matrices as V(g). To the complex 
basis there will be an adjoint basis [(x - iy ) /v /2 ,  z,  ( x  + 
iy) /v /2] ,  in which the V(g) will be expressed by matrices 
D"~* and D ")-* for SO(3) and O(3), respectively. 

The k-tuples ei i  , = e~ l~e}z).., e} k) can be formally 
accepted as vect(~{s"~f an 'orthonor~al basis of a 3 k- 
dimensional space L k, which has elements: 

U = U i , i 2 . . . i k e i , i 2 . . . i k .  (6) 

If we also accept that a transformation V(g) of L 3 
implies the transformation 

V k ( g ) e i l i 2 . . . i k  = D k J , J  . . . .  jk, i , i  . . . .  i k ( g ) e j , j 2 " ' ' J k  (7)  

of 1_'3, where 

D~,j2...j~i,~2...,, (g) = tZj,~, (g)tZj2~(g)... Dj~i,(g), (8) 

then we say that u are the general (asymmetric) tensors 
of kth rank and Vk(g), Dk(g) are the operators and 
matrices, in the basis {ei,i2...i ,} of L3*, of the kth-rank 
(general) tensor representation of O (3)... .  

Again we define an adjoint space L*3 with a basis 
{ui,il...ik} ' in which the adjoint operators Vk(g) are 
expressea by the adjoint matrices ~k(g). This space is.a 
space of linear functions of kth-rank asymmetric 
tensors. On the other hand, we define a space L*3 of 
multilinear functions of k vectors x")C L 3, i = 
1,2, k, with a basis ..0),.(2) x (k) on which there 
act operators Qk(g) which, in this basis, are expressed by 
matrices [3k(g). We can see almost immediately that the 
matrices ~k(g) and 13k(g) would be identical even when 
the original matrices D(g) are neither orthogonal nor 
unitary. Hence there is always a one-to-one corre- 
spondence between linear functions of tensor compo- 
nents and multilinear functions of the original vectors 
given by the correspondence of bases: 

"~ ~l)x~Z~ x ~k~ (9) Uili  2 . . . i  k ' ' '  il i2 • . . i k , 

such that the transformation properties of corre- 
sponding elements, are the same - the difference 
between operators Vk(g) and Qk(g) is rather formal. It is 
more usual to define a tensor by the use of relation (9) 
as a set of quantities u~,~...z~ which transform in the 
same way as the product of k vector components. The 
definition of tensor space used here follows the 
procedure of constructing direct powers in the sense of 
group representation theory. If we work with the real 
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basis of the space L~, then the original matrices are 
orthogonal, so are  the matrices [3k(g), and hence all 
three matrices [3k(g), I3k(g), and [3k(g) coincide, so that 
the ei,i~...i k also transform as (9). 

Intrinsic symmetry 

The tensors of physical properties of crystals are 
often restricted by requirements of certain symmetry 
with respect to the permutation of indices - so-called 
'intrinsic symmetry'. Let us recall the results of the 
theory of representations of the symmetric group S k on 
a kth-rank tensor space (Weyl, 1946; Boerner, 1955; 
Lyubarskii, 1958): To any permutation 

J ' l  = '2' k 

of k elements there corresponds an operator P(J-~) on 
the tensor space L k which transforms the basic tensor 
e l i  i into another basic tensor e~j i .  Corres- 

I 2 " ' . ' .  k . . . ' 2 . . . .  k '  

ponOmg matrices are ortlaogonal an~ therefore the 
operators are defined in the same way for the space of 
functions of tensor components or for the multilinear 
functions. The most important result of the theory is a 
consequence of the commutation of operators P ( J~)  
with all operators V~(g); this result is: If 5 is any sub- 
group of 5k, and F0a(S ) a certain matrix REP of 5, then 
tensors which form the jth component of the F0a(9 ) 
covariant form an invariant under Vk(g) subspace of 1_3 k. 

Intrinsic symmetries are particular cases of per- 
mutational symmetries; they require either that a tensor 
does not change under certain permutations or that it 
changes its sign. It means that intrinsic symmetry is 
characterized by identity or by alternating REP of a 
certain subgroup 5 of S k. The Jahn symbols for 
intrinsic symmetries are well known (Jahn, 1949; 
Sirotin & Shaskolskaya, 1975). If we label the intrinsic 
symmetry ;t, then kth-rank tensors of intrinsic sym- 
metry 2 form an invariant under Vk(g), g E 0(3), sub- 
space /~,~ or /~. Accordingly, the tensor representation 
restricted to this subspace should be additionally 
labelled by 2: V k. In practice we use the customary 
notation [VZ],/V2}, V[V2], etc. 

Tensorial covariants 

Any crystal point group G is a subgroup of 0(3). If 
we have the kth-rank tensor representation V~ of 
intrinsic symmetry 2 for the group 0(3), then by 
selecting only operators V k (g), g E G, we get the kth- 
rank tensor representation of intrinsic symmetry 2 for 
the group G. This restriction is called subduction and 
the representation is denoted Vka (G) = V~.t G;it operates 
on the same space L~a. For simplicity we denote the 
basic vectors {ei} of l_~a by the single index i. Then the 
tensor u E L~a is simply a linear combination u = ute i. 
Let F0s(G ) be the chosen matrix REP's of the group G 

which compound its typical matrix representation. 
Then the definition of the tensorial covariant is: The 
linear F0s covariant on kJais called the tensorial F0~ co- 
variant of the kth rank and of intrinsic symmetry 2. 

The number of linearly independent tensorial co- 
variants can be simply calculated by the orthogonality 
theorem for the characters. The jth component of such 
a F0~ covariant is a linear combination Ucta, j = C(wa,j)iUi 
and finding the covariants means the same as finding 
the bases eaa  j - -  C ( a a j ) i e i ,  in which the tensor 
representation V~ (G) is reduced to a form prescribed by 
the typical matrix representation of G. 

4. The Clebsch-Gordan products 

Let As(G), Ao(G) be operator representations of G 
acting on inva~iant irreducible subspaces Los, L0~ and 
let these be, in the bases {%1}, /esj} of Lo, ~, Lo~, 
expressed by the matrix REP's Fo,~(G), F0~(G ) of the 
fixed typical matrix representation Fo(G ). The direct 
product A~(G) -- As(G ) ® A~(G) of REP's acts on the 
direct product L~  = Los ® L09 of spaces and, in the 
basis {%i%j} of Lsp, the operators are expressed by 
matrices of  the direct product F0,~(G ) ®F0b(G ). The 
representation A,~ (G) contains a REP of a class Z~, (G) 
just (aft#)= ( l /N) ~g~GZ~(g)zp(g)~(g)times and it is 
therefore possible to find just (t~fl/~) invariant irre- 
ducible subspaces L~, m of L,~, and bases {E~, m k}, m -- 
1,2, . . . ,  (aft#); k -- 1,2 . . . .  , d-~,, in which As~(G ~ has the 
matrix form Fo,(G ) prescribed by the typical repre- 
sentation. These bases must be linear combinations of 
e o ~ i e ~ j :  

E•m,k = ~ (aiflj[luk)m eai %j ,  (10) 
i,j 

where (aifljlt~k)m are the Clebsch-Gordan coefficients 
which form the transformation matrix from the basis 
/%i%j} to the basis/E,m,k }. 

T h e  use of adjoint spaces is more convenient, 
especially for tabulation. Here we have two typical 
covariants x (~) and x(P ), whose components form bases 
of invariant irreducible spaces Lo, ,, Lop. There then 
exist (aft#) Fou covariants of the form: 

(~tm,k = ~. (a'ifljlBk)*mXaiX~j, (11) 
i,j 

bilinear in xsi, .x[~j and linearly independent. The 
components of these covariants span invariant irre- 
ducible subspaces [~,m, of the direct product space 
[ ~  ® ,[o~. We call these covariants the Clebsch- 
Gordan products of covariants x t~' and x(P ). Having 
these products for all pairs of covariants, we can 
perform reduction of a direct product of any two spaces 
L,, Lz, provided that the spaces E,, Lz are already re- 
duced. Indeed, the reduction of L n, E m can be given by 
sets of covariants Xta ~), x(bP ), respectively, while the 
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reduction of the direct product space L n ® L m is given 
by their CG products, which can be easily found by 
formula (11). Thus the products of typical covariants 
give the prescription for multiplying any particular co- 
variants. I gave this prescription for all magnetic crystal 
point groups (Kopsk3), 1976b) and shall now use it to 
derive tensorial covariants. 

The use of CG products in tensor calculus is based 
on the similarity of transformation properties of tensors 
and of multilinear functions (9). We can, by con- 
secutive use of CG products, find multilinear co- 
variants as well as covariants of kth-rank asymmetric 
tensors. Tables of CG products also describe symmetri- 
zation in two indices and can be used (as we shall see in 
practice in §5) to calculate directly those tensors which 
are obtained by direct multiplication and symmetri- 
zation in two indices. Generally (as, for example, in the 
case of fully symmetrized or antisymmetrized tensors 
of rank higher than two), we have to perform the 
symmetrization as an additional procedure. Such cases 
are not treated here; in particular cases, the symmetri- 
zation can be performed without problems. A quite 
general theory of tensorial covariants is connected with 
the theory of polynomial and multilinear covariants 
which is being developed. 

5. Tensorial covariants for the 32 crystal point groups 

In Appendix I the list of tensors is given, and then lists 
of their covariants for crystal point groups are given in 
Appendix II. The covariants are given as linear 
combinations of tensor components with respect to a 
standard Cartesian frame of reference and their form 
depends, for a given group, on the orientation of the 
group and on the choice of its typical representation. 
We shall associate the covariants here with the same 
typical representations as those used in lists of CG 
products. Of the two schemes given in Kopsk~, (1976b) 
the real one is used, so that the covariants in the present 
paper are real. The requirements of reality and 
irreducibility are, however, not compatible for cyclic 
groups and for groups T, T h. These groups have one- 
dimensional complex REP's which appear in mutually 
conjugate complex pairs. As usual, we join such pairs 
into one REP and bring it to a real form known as a 
physically irreducible representation (a representation 
irreducible in the real field but reducible in the complex 
one). It follows that if (x,y) is a covariant to such a 
REP, then (y,--x) is also a covariant to the same REP. 
Of these two covariants only one is given. 

6. Orientation of groups and choice of typical 
representations 

The lists of covariants (Appendix II) are divided into 11 
Laue classes (Henry & Lonsdale, 1952). The orien- 

tation of the proper rotation groups which determine 
the Laue classes is chosen in the usual way: the unique 
axis is along the z direction and one of the auxiliary 
axes is along the x direction; the cubic axes of cubic 
groups are along the x ,y , z  directions. The noncentro- 
symmetric groups of a given Laue class are iso- 
morphous with the proper rotation group and have, 
therefore, the same system of REP's. Groups with the 
same orientation as the proper rotation group are 
chosen; in cases when there are two such groups in the 
same crystal class the covariants are given explicitly for 
only one. The noncentrosymmetric groups then have, 
apart from the space inversion, the same elements as 
the proper rotation group. The matrix REP F0~(G ) of 
the proper rotation group assigns to an element g E G a 
matrix Dt~(g); in a noncentrosymmetric group there 
again corresponds to g either g or ig; to this element is 
again assigned the matrix D<'~(g). The orientation of 
the centrosymmetric group G h = G x I is defined by the 
orientation of its proper rotation subgroup. The number 
of REP's of G h is twice that of G and we distinguish 
them by parity labels + or - (g or u in spectroscopic 
notation) which indicate whether the matrix of i is the 
unit matrix or its negative. The numerical labels of 
REP's and the choice of matrices for proper rotation 
elements are the same as for the proper rotation group. 

The tensorial covariants are arranged in lists 
common for all groups of the (oriented) Laue class. The 
first row of each list contains the REP's in the F 
notation and a set of typical variables (the typical co- 
variant) follows the F symbol. The covariants of odd 
space parity tensors are given in rows for the 
noncentrosymmetric groups, which are specified at the 
left-hand side of each row by the international symbol 
with indices denoting the orientations of the elements. 
The columns specify the types of Covariants. The co- 
variants of even space parity tensors are common for 
all noncentrosymmetric groups, because these tensors 
are insensitive to the space inversion (and because of 
the choice of REP's for the noncentrosymmetric 
groups). They are given in the lowest row of each list 
and designated as common or, for groups C 3 and T, 
which have no noncentrosymmetric isomorphs, as 
even. 

As concerns the numerical labels, the covariants for 
the centrosymmetric group are, because of the choice 
of REP's, the same as for the proper rotation group; 
additionally, they have to be supplied by parity + or - 
according to whether the tensor is even or odd. The co- 
variants of the centrosymmetric group can therefore be 
found in the row for the proper rotation group if the 
tensor is odd, and in the row common (or even) if the 
tensor is even. 

To correlate our F labelling of REP's with the usual 
spectroscopic notation (Heine, 1960) we give, below 
each list, the correspondence of typical variables to 
spectroscopic symbols. 
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7. Derivation oftensorial covariants 

For the vector which is represented by polarization 
P = (PzP2,P3), (x ,y ,z  ~ 1, 2, 3) and for pseudoscalar e 
we have to determine transformation properties by 
inspection. In the choice of matrix REP's, the use of 
tensor calculus has been anticipated, so that the corre- 
spondence of Pi to typical variables is seen almost at 
once. The pseudoscalar belongs to the identity REP 
of the proper rotation group and to the ~ REP of the 
centrosymmetric group. For a noncentrosymmetric 
group, e belongs to that one-dimensional alternating 
REP F,~ which has chazacters --1 for those elements 
which are combined with the space inversion. Hence e 
transforms, in such a group, as x,~. 

With lists of CG products at hand, the rest of the 
work is routine. First we write the Pg and e under that 
typical variable which transforms in the same way; we 
do the same with other tensors as we proceed with the 
calculation. For higher-rank tensors, the C G products 
often yield sets of covariants which can be replaced by 
their linear combinations of simpler form. We proceed 
consecutively from tensors of lower rank to tensors of 
higher rank using the similarity of the transformation 
properties of components of higher-rank tensors with 
bilinear combinations of components of pairs of lower- 
rank tensors. 

Thus the symmetric second-rank tensor Uik trans- 
forms as the symmetric combination (P~P'k + PkP')  • In 
the lists we use the usual abbreviated notation: u~ = 
Uxx ~ U 2 = Uyy ,  / /3  = Uzz' U4 = 2Uyz, u5 = 2Uzx, u6 = 2Uxy" 
To determine the piezoelectric covariants, we recall that 
dik transforms like Piuk (i = 1, 2, 3; j = 1, 2, 3, 4, 5, 6). 
The elastic tensor Sik transforms as the symmetric 
combination (uiu' k + UkU~), the gyration tensor gik like 
eUik , and the tensor of electrogyration A ~k like tdik. The 
last tensor here for which the covariants are given is the 
elastogyration tensor Q~k which transforms like u~u k 
(the asymmetric square of tensor u). To save space I 
use the fact that Q can be decomposed into its 
symmetric part (1/2) (Qik + Qki) which transforms like 
sit ̀ and into its antisymmetric part qik = (1/2) ( Q i k  - 
Qk i )  which transforms like (uiu' k - uku~). In certain 
cases the q covariants are the same as the s covariants; 
this is indicated in the lists by an asterisk at the s co- 
variant. However, sometimes the indices of compo- 
nents in the q covariant are reversed as compared with 
those of the corresponding s covariant (this is because 
sit ̀ is symmetric while qik is antisymmetric and that we 
always used the smaller index of s as the first one). The 
necessity of reversing the indices for the q covariant is 
indicated by underlining the indices of the component 
s~. Several q covariants cannot be expressed in this 
way and these are given separately. 

Performing the calculations for each group and 
collecting the results into lists as described, we can 
observe a certain regularity with which the odd parity 
covariants change as we pass from the proper rotation 

group to its noncentrosymmetric isomorphs. This regu- 
larity is due to the following: If a certain linear combi- 
nation of components of a tensor of odd parity 
transforms as x~i for the proper rotation group, then 
the same combination must transform in a noncentro- 
symmetric group as ex,~ r Below the lists of covariants I 
indicate the effect that multiplication by ~ has on trans- 
formation properties of typical variables for all 
noncentrosymmetric groups of a corresponding (orien- 
ted) Laue class. In the following paper I shall consider 
analogous relations more closely with the aim of 
simplifying the calculation of tensorial covariants for 
magnetic point groups. 

8. Some applications 

(i) Equilibrium fo rm o f  tensors 

Properties of a physical system in equilibrium must 
be invariant under the operations of its symmetry 
group, while the noninvariant properties must vanish. 
The invariant combinations of tensor components are 
given in the column of invariants; equating all other co- 
variants to zero we obtain a set of conditions which the 
equilibrium tensor components have to satisfy. These 
conditions are given in brackets in the column of 
invariants. 

(ii) Phenomenology o f  struetural phase transitions 
The components of tensorial covariants mean 

physically the fluctuations and are important in the 
consideration of structural phase transitions with 
change of point symmetry. If we find covariants from 
components of homogeneous modes, then we can say 
what mode contributes to what tensorial property. The 
Landau transition parameter means in our language 
the set of components of a covariant. We can see from 
the tables that, apart from transitions that are driven by 
polarization or by deformation (ferroelectric and ferro- 
elastic transitions) there are also conceivable transi- 
tions in which material tensors play macroscopicaUy 
the role of the transition parameter; the lowest tensors 
connected with such transitions are d, g, and A. The 
'gyrotropic phase transitions', in which the optical 
rotatory power is the sole property accompanying the 
transitions or in which the tensor g acquires new 
components in the low-symmetry phase, deserve 
attention and have been studied with the use of the lists 
presented here (Kofi/~k, Kopsk~, & Smutn~,, 1978). One 
example of such a transition has already been reported 
in caesium cupric chloride, CuCsC13 (Hirotsu, 1975). 
As long as we work only with the 32 classical groups, 
we can consider only those transitions which do not 
involve magnetic properties. We can, evidently, expect 
that new (so-far unconsidered) phase transitions can be 
predicted from an inspection of tensorial cova:riants for 
the magnetic point groups. 
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As a minor application, let us mention the possibility 
of reading directly from the tables the switching forces 
for ferroelastoelectric and ferrobielastic domains 
(Cross & Newnham, 1974). The former are given by 
the components of the piezoelectric t e n s o r  dik which 
can be replaced by a combination Eia k of the external 
electric field E of external stress o, the latter by compo- 
nents of the elastic tensor si, which can be analogously 
replaced by the combination aNk. 

Phase transitions can be studied globally as relations 
between a group and its subgroup by the use of typical 
variables as representatives of physical parameters. The 
advantage of such an approach is clear; the number of 
relations which have to be considered is sharply 
reduced. I have found that out of about one thousand 
physically different transitions from magnetic point 
groups (except paramagnetic groups C~h, C~h , D' 2h~ 
D'4h, D'6h, T~, and O~,) to their subgroups there are only 
44 abstractly different types. The domain and fine- 
domain structures have been determined for these types 
(Kopsk~', 1979b) as well as the corresponding thermo- 
dynamic potentials. To transfer these abstract results to 
the physical interpretation the typical variables need to 

be correlated with their actual meaning in individual 
cases, as is done in the lists of covariants. 

A P P E N D I X  I 
List of  tabulated tensors 

Jahn 
Tensor Parity symbol Physical meaning 

e -- ~ Pseudoscalar, enanthiomorphism 
P - V Polarization 
u + [V 2] Strain, stress, permittivity 
d -- V[V 2] Piezoelectric tensor, electrooptic 

coefficient 
S + [[V2] 2] Elastic compliance or stiffness 

coefficient 
Q + [v2] 2 Electrostriction, elastooptic or 

piezooptic tensor 
g - e[V 2] Gyration tensor (optical rotatory 

power) 
A + eY[V 2] Electrogyration tensor 

Several relations between tensors: 
u ~ [P @ P], d ~ p ® u ,  s ~ [n ® u], Q ~ u ® u ,  g ~ eu, A ~ ed. 
Q = Qsym + Qantisym, ~--.uO'sym = (1/2)(Qu + Qtt), 
qi: = Q~ntisym = (1/2)(Qo_ Qji). 
Q~fm ~ Sift 

The symbol ~ means transforms like. 

A P P E N D I X  II 
Tensorial covariants for the 21 noneentrosymmetrie and 11 eentrosymmetrie crystal point groups 

Triclinic, monoclinic and orthorhombic point groups 
Laue class C~ 

C~ (_1) Trivial; all tensor components are invariants and are allowed in equilibrium. 

C l (1) All even tensor components are invariants (F~ - A g )  and are allowed in equilibrium. 
All odd tensor components are F? covariants (F? - A~) and are forbidden in equilibrium. 

Laue class C2 

c~ (L) 

C s (mz) 

C o m m o n  

c= (20 
c, (mz) 

r,(x,) G(x9 

t~ P3 
gl g2 g3 g6 
d31 d32 d33 
d14 dr5 d24 d25 d36 

PI P2 
g4 g5 
dn  dl2 dla d21 d22 d23 
dl6 d26 d34 d35 

P1 P2 
g4 g5 
dll d12 d13 d21 d22 d33 
d16 d26 d34 d35 

e P3 
gl g2 g3 g6 
d31 d32 d33 
d14 d15 d24 d25 d36 

U 1 U 2 U 3 U 6 

Sll $12 813 $22 $23 833 
816 $26 836 $44 $45 S55 $66 
A31 A32A33 
AI4 AI5 A24 A25 A36 

U4 U 5 
S14 SI 5 $24 $25 $34 $35 
$46 S56 
A l l A I 2 A I 3 A 2 1 A 2 2 A 2 3  

A16A26A34A35 

X 1, X 2 
A, B 
A', A" 

dx2, x2] 
X 1) X 2 
X 2, X 1 
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Laue class D 2 

D 2 (2 x 2y 2,) 

C2v (m x m, 2 )  

Common 

G(x,) G(x9 r3(x~) r , ( x , )  

dl4 

gt g2 g3 

d25 d36 

P3 
dn 
d~5 

P3 g6 Px g4 P2 gs 
d31 d32d33 dn dl2 d13 d21 d22 d23 
dr5 d24 d26 d35 dr6 d34 

g6 
d32 d33 
d24 

ul u2 u3 
Sll $22 $33 
s12 813 $23 
s44 $55 s66 
A 14 A 25 A 36 

t gt g2 g3 P2 g5 PI g4 
d21 d22 d23 d n  d12 d13 

d14 d25 d36 d16 d34 d26 d35 

Xp x2~ x3~ x 4 
D 2 (2x2y2~) A, B 1, B3, B 2 
C2v (mxmy2~) AI, A2,B2, Bx 
C2v (m~2ym~) 
C2~ (2xmym~) 

U 6 U 4 U 5 
S16 S26 $36 S14 824 S34 S15 $25 S35 
S45 $56 S46 
A31A32A33 AIIAI2AI3 A21A22A23 
AI5 A24 A26A35 AI6A34 

t[xx. x2, x3, x4] 
Xl~ X2~ X3~ X 4 
X2~ X D X4~ X 3 
X4, X3, X2, Xl 
X3~ X4~ X D X 2 

Tetragonal point groups 
Laue class C4 

Fl(X l) r~(x9 R~X)(xs,y,) 

C4 (4,) e P3 gl + g2 g3 
[gl = g2] 

d31 + d32 d33 
d14 - d25 d15 + d24 
[d3, = d ~ # .  = - d . , d , ~  = de,] 

gl--g2 g6 

d31--d32 
d14+d25 d15-d24 d36 

(PI,P2) (g4, -- gs) 

(dn,d22) (d12,d21) 
(d26,d16) (d35,d34) 

(d13,d23) 

S,  (4,) gl - g2 g6 
[gl = --g2] 
d31 -- d32 
d14 + d25 dis - d24 d36 
[d3l = --d32,d14 = d25,d15 = -d24 ] 

e P3 g~ + g2 

d31 + d32 d33 
d14 - d25 dis + d24 

g 3  ( e , ,  - e, . )  (g , ,gs)  

(dn,  -- d22 ) (d12, - d21 ) (d13,-  d23 ) 
(d26 , -- dr6 ) (d35, - d34 ) 

Common u I + u 2 u 3 
[ul = u 21 
Sll + S22 S12 513 + $23" S33 
S16 -- S26" $44 + S55 S66 
[Sll = S22~S13 = $23,$14 -~- --S26",S44 = S55] 
A3I + A32 A33 
AI4--A25 AIs+A24  
[A31 = A 32,A 14 ~-- -A25,A 15 = A 24] 
q45 

Ul--U 2 u 6 

s11--$22 s13--$23 ~ $36 $ 
SI6 + S26" S44--$55 $45 

A31 --A32 
At4 + A25 AI5 --A24A36 

ql2 

(U4, -- U5) 

(s14 , - -  s2s)* (s24, - -  s15)* 
(S34' -- $35)* ($56, -- $46)* 

(A II,A22) (AI2,A21) (AI3,A23) 
(A26,A 16) (A35,A34) 

C, (_4,) 
$4 ( 4 , )  

x .  x2, (Xs,Y5) e[x~, x2, (x.y5)] 
A, B, E x .  x 2, (Xs,Ys) 
A, B, E x 2, x l, (ys, xs) 
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Laue class D 4 

rl(Xl) G ( X 2 )  /"3 (X3) G ( X 4 )  R~')(xs,y 5) 

D4 (4z 2x2xy) egi + g2 g3 
[gl=g2]  

d14-d25 
[dt4=-d25] 

P3 gl -- g2 g6 

d_31 + d32 d33 d31-  d32 
d15 + d24 d14 + d25 d36 d i s  - d24 

(P1,P2) (g2,--gs) 

(dll,d22) (d12,d21) 
(d26,d16) (d35,d34) 

(d13,d23) 

C4v (4zmxm,~) P3 
d31 + d32 d33 
d15 + d24 
[d31 = da2,d15 = d u] 

e gl + g2 g3 g6 
d3,-d~2 

d14 -- d25 d15 - d24 

g l  - -  g2 

d14 + d25 d36 

(P2, - P )  (gs,g4) 
(d22,-d11) (d2,,-dl,) (d23,-d13) 
(d16,--d26) (d34,--d35) 

D2d (~,~ 2xmxy) g l  - -  g2 
[gl = --g2]  
d14 + d25 
[d14 = d25] 

d36 

g6 e gl + g2 g3 P3 

d31 - d32 d31 + d32 d33 
dis - -  d24 dl4 - -  d25 d15 + d24 

(Pl,--P2) (g4'gS) 

(d,,,--d22) (d12,-d21) (d,3,--d23) 
(d26,-d,6) (d35,-d34) 

C o m m o n  U 1 + U 2 U 3 U 1 - -  U 2 
[Ul = u21 
811 + 822 812 811 - -  822 
S13 + 823" 833 813 - -  823" 
$44 + 855 866 816 - -  826* 844 - -  855 
[Sll  = 822,813 = 823,S44 = 855] 
AI4 --A25 A31 + A32A33 
[ h  14 = --A25] A 15 + A24 A14 + A25 A36 

q45 ql2 

u 6 

816 + 826" 836" 845 

A31 - - A 3 2  
AI5  - - A 2 4  

(U 4, --U 5) 

(814, --825)* (824, - -S l  5)* 
(834,--835)* (856,--846)* 

(All,A22) (AI2,A21) (AI3,A23) 
(A26,A 16) (A35,A 34) 

X 1, X 2, X 3, X 4, (x5,Y 5) 
D 4 (4 z 2 x 2xy) A 1, A 2, B 1, B2, E 
C4v (4_zmxmxy) A 1, A 2, B 1, B 2, E 
D2a (4_~2xm~y) AI, A2, BI, B2, E 
D2a (4zmx2xy) 

~[X 1, X 2, X 3, X 4, (xs,Ys)l 
Xl, x2, x3, x4, (x5,Y5) 
X 2, X 1, X 4, X 3, (Y5,--Xs) 
x3, x4, x1, x2, (x5,-Y5) 
x4, X3, x2, Xl, (Ys,Xs) 

Trigonal and hexagonal point groups 
Laue class C 3 

G(Xl) Rtl)(x3,Y3) 

C 3 ( 3 z )  
O d d  

P3 gl + g2 g3 
[gl = g2] 

d l l  - -  d l2  - -  d26 d22 - d21 - d16 
d3t + d32 d33 
d14 - -  d25 d15 + d24 

[ d l l  = - d 1 2  = - d 2 6 / 2  , d22 = - d 2 1  = - d 1 6 / 2  , 
d31 = d32 , d14 = - d 2 5  , d i s  = d24] 

(PI,P9 ( g l -  g2,-g6) (g4,--gs) 

(dll - -  d12 + d26,d22- d21 + d16) 
(all + dl2,d2, + d22) (d13,d23) 
(d14 + d25,d15 - d24 ) (d35,d34) 
(d36, d31 - d32) 

Even U 1 + U 2 U 3 
[Ul = u21 
Sll + 822 + 2812 Sl l  + 822 - -  2812 + 866 
813 + 823" 833 844 + 855 
S14 - -  824 + 856* S15 - -  S25 - -  846" 
[SII -~ 822 ~-~ 812 + 866/2,813 = 823" , 
$44 = $55,814 = --824 = 856/2" , 
815 = --825 = - -846/2*]  

AlI-AI2--A26 A22-A21-AI6  
A31 --A32 A33 
AI4 --A25 A15 + A24 
[A It = - A  12 = - A  26/2,A 22 = - A  21 ~-~ - A  16/2, 

A 31 = A32,A 14 = --A25,A is = A24] 

q16 - -  q26 q45 
[q16 = --q26] 

(U 1 - -  U2,--U6) (U4,--Us) 

(Sl l  - -  822,--816 - -  826 ) 
[811 - -  8 2 2 -  2812 - -  866 , 2(816 - -  826)] 
(s ,~ - s 2 ~ , - s ~ 6 ) *  
(S14 - -  824 - -  856,815 - -  825 + 846)* 
(Sl, + s ~ , , - s ~ -  s .)* % , , - 8 . ) *  
(844 - -  855 , 2845) 
(All --A12 + A26,A22 --A21 + A16) 
(All +A,2,A2, +A22) (A13,A23) 
(AI4+A25,AIs-A24) (A35,A34) 
(A36,A31 -- A32 ) 

(2q12, q16 + q26) 

C3 ( 3 z )  
Xl, (x3,Y3) 
A, E 
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Laue class D 3 

rl(x,) F2(X2) R~I)(x3,Y3) 

D 3 (3~ 2 0  e gl + g2 g3 
[gl = g2] 

d n --  d12 --  d26 
d14 --  d25 
[d,1 = -d12  = - d 2 6 / 2 ,  d14 = -d25]  

P3 

d 2 2 - d 2 1 - d , 6  
d31 + d32 d33 
dis + d24 

( P p P 2 )  (g l - -g2 , - -g6 )  (g4,--gs) 

(dll -- d12 + d26,d22 --  d21 + d16) 
(d n + d12, d2, + d22) (dn ,  d23) 
(d14 + d25, dis --  d24 ) (d35, d34) 
(d36, d31 --  d32 ) 

C3v (3. mx) P3 
d22 - d21 - d16 
d31 + d32 d33 
dxs + d24 
[d22 = --d21 = - d 1 6 / 2  , d31 = d32 , dis = d24] 

e gl + g2 g3 
d n - d n - d 2 6 :  
d t 4 - d 2 5  

(P2 , -P1 )  (g@gl -- g2) (g,,g,,) 
(d22 - d21 + d 1 6 , - d  n + d12 - d26 ) 
(d21 + d 2 2 , - d  n - d12 ) (d23,-d13) 
( d 2 4 -  dls, d~4 + d25) (d34,-d35) 
(d32 - d31, d36) 

C o m m o n  U 1 + U 2 U 3 
[U 1 = U21 
811 + 822 + 2812 
Sll + 822 -- 2812 + S66 
S13 + $23" 833 
S44 + 855 
S,4 --  824 + 856" 
[811 = S22 = S12 + 866/2,813 = S23", 

844 = 855 , S14 = --824 = 856/2*] 
Al l  - -AI2  --A26 
A ,4 - -A25  
[h  11 = --A 12 = - A  26/2, A 14 = --A 22] 

815--$25--$46" 

A22--  A21 --A16 
A31 + A32 A33 
AI5 + A24 

q16 - -  q26 q45 

(U 1 --  U2,--U6) (U4,--Us) 

(811 --  $22,--S16 -- $26 ) 
[S,1 --  S22 --  2812 -- S66 , 2(816 -- 826)] 
(813 - -  823,--836) $ 
(814 --  824 --  826,8,2 --  825 + 840* 
(814 + 824,--S~- 5 -- 825)* - -  (834,__835)* 
($44 --  852' 2842) 

(Al l  --A12 + A26,A22 --A21 + A16) 
( A n  + A12,A21 + A22) (A13,A23) 
(AI4 + A25,A15 --A24) (A35,A34) 
(A 36,A31 -- A32 ) 
(2q12, q,6 + q26) 

D 3 (3~ 2 x) 
C3v (3~mx) 

Xl, 12, (x3,Y3) 
A1, A2, E 
A,, A2, E 

e[Xi, X2, (x3,Y2)] 
X,, X2, (x3,Y3) 
X2' Xl' (Y3'--X3) 

Laue class C 6 

/"1 (XI) r2(x9 R~I)(xs,ys) R t61) ( x6,Y 6) 

C 6 (6,) e P3 e l  ÷ g2 g3 
lgl = g21 

d31 + d32 d33 dn - d n - d26 
d14 --  d25 d,5 + d24 d22 --  d21 --  d16 
[d31 = d32 , d14 = --d25 ,d l  5 = d24] / 

(gl -- g2'--g6) 

(d36, d31 -- d39 
(d14 + d25,d15 - d24 ) 

(P1,Pz) (g4, --gs) 

(d n --  d12 + d26,d22 --  d21 + d,6) 
(a l l  + dx2,a21 + a29 (d,3,a23) 
( d 3 . d 3 , )  

C~ (8,) P3 gl  + g 2  g3 
d n --  d12 - d26 d22 - d21 - d16 d31 + a32 d33 
[d n = - d 1 2 = - d 2 6 / 2  , d l a - d 2 5  d15 +d24 

d22 = --d21 = -d16 /2 ]  

(PI,P2) (g4,--gs) (gl -- g2,--g6) 
(d n - d n + d26,d22 - d2t + d16)(d36,d31 - -  d3z ) 
(d n + dt2,d21 + d22) (d13,d23) (d14 + d25,dt5 -- d24 ) 
(d35,d34) 

C o m m o n  U 1 + U 2 U 3 
[ul  = u21 
811 + 822 + 2S n 
Sll + 822 --  28 n + S66 
813 + 823' 833 844 + 855 

[Sll = 322 = 312 + 866/2, 
813 = 823"~844 = 855] 

A31 + A32 A33 

A14--A25 A15 + A24 

[A3t = A n ,  A 14 = --A25, 
A 15 : A 24 ] 

q16 --  q26 q45 
[q16 = --q2J 

814 -- $24 + 856* 
815 -- 825 -- 846* 

A n - A 12 - A26 
A 2 2 -  A21 - -A16  

(/~1 --  U2)--U6) 

(SI1 --  822)--816 --  826 ) 

[SII + 822 --  2812 --  866 , 
2(S16 -- S26)1 

(sl3 - s23,-s36)* 
(844 -- 555, 2845) 
(A3@A31 --A3z) 

(A14 + A25,AIs--  A24 ) 

(2qn, q16 + q26) 

(U 4, --U5) 

(S14 --  $24 --  $56,S15 --  825 + S46)* 

(814 -F $24~--815 -- 825)* 
(834, --835)* 
( A l l - - A 1 2  +A26,  

A22 --A21 + A16) 
(All  + AI2,A21 + A22) 
(AI3,A23) 
(A35,A34) 

x 1, x 2, (x5,y5), (x~,y6) 
C 6(6z )  A, B, E2, E l 
C3h (6~) A', A", E', E" 

d x .  x2, (xs,Ys), (x6,y6)l 
x .  x 2, (xs,ys), (x6,y 6) 
X 2, X l, (x6,Y O, (xs,Ys) 
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Laue  class D 6 

I'l(x,) G ( x 9  r3(x~) r4(xO R(sl~(x5,Ys) R~61)(x6,Y6) 

D6 (6~ 2 .  2y) gl  + g2 g3 
[gl = g2] 

d14 - d25 

[d14 = --d25] 

P3 

d31 + d32 d33 

d15 + d24 

d n - d12 - d26 d22 - d21 - d16 

(gl -- g2'--g6) 

(d36, d31 -- d32 ) 

(d14 + d25,d15 = d24 ) 

(P1,P2) (g4,--gs) 

(dll -- d,2 + d26. 
d 2 2 -  d21 + d16) 

(d  n + d,2,d2 , + d22) 
(d13, d23) 

(d35,d34) 

C6v (6~mxmy) P3 
d3l + d32 d33 

d~ 5 + d24 

[d31 = d32,dt5 = d24] 

e gl + g2 g3 

d14 - d25 

d22 -- d21 -- d16 dll  -- d12 -- d26 
(g6,gl -- g2) (P2, - -PI)  (g5,g4) 
(d3~ - d , , ,d ,O (d= - d, ,  + dl~, 

- -d  n + d12 -- d26 ) 
(d24 --  d,5,a,4 + d25 ) (d2, + d22, -da ,  -- d12) 

(d23 , - -d l  3) 
(d34, --d35) 

D3h(6z2xmy) 
dl1 -- d 1 2 -  d26 

[dll = --d12 = -d26/2]  

d22 -- d21 -- d16 
8 g~ + g2 g3 P3 

d31 + d32 d33 

d14 -- d25 d~5 + d24 

(el, P9 (g, - g,) 
(d  n - d12 + d26, 

d22 - -  d21 -t- d16 ) 
(dll  + d12,d21 + d22) 
(d13,d23) 
(d35,d34) 

(gl -- g2' g6) 
(d36, d31 -- d32 ) 

(dl4 + d25, d15 - d24 ) 

Common U 1 + U 2 U 3 
[U 1 = u2l 
SII  + S22 + 2S~2 

SII  + $ 2 2 -  2S12 + S66 

$13 + $23" 833 
$44 + $55 
[S l l  = $22 = S12 + 

$66/2, S13 = $23" , 
$44 ~-~ $55 ] 

a14--h25 

[A 14 = --A 251 

h31 + A32 A33 

A~5 + A24 

q16 = q26 q45 

S14--$24+$56 * S15--$25--$46" 

(Ul - -  U2 ' - -U6)  (U4'--~/5)  

(S l l  - -  $22,--S16 - -  S26 ) (S14 - -  $24 - -  $56 , 

$15 - -  $25 + '$46)*  
[$11 + $22 - -  2S12-  (S14 -]- S24 , - -  

--$66, 2(S, 6 -- S26)] --Sl5 -- S25)* 
($13 - -  $23,--S36)* ($34,--$35)* 
(S44 - -  S55, 2s45) 

AII-AI2--A26 A22--A21--A16 (A36,A31-A32) 

(A14 + A25, 
AI 5 --A24) 

(2q12,q16 + q26) 

(A11 - -AI2  + A26, 
A22 --A21 + A I 6 )  

( A n  + AI2, 
A21 + A22) 

(A 13,A 23) 
(A35,A34) 

x, ,  x 2, x3, x4, (xs,Ys) , (x6,Y6) 
D6 (6z2.2y) AI, A2, B2, BI, E2, El  
C6~ (6~m.mz) A l, A 2, B 2, B~, E 2, E l 
D3h (6_-~m.2.) a ] ,  A~, A~', A]' ,  E ' ,  E "  
D3h (6z2xmy) 

8[Xl, X2, X3, X4, (x5,Y5), (x6,Y6)] 
x~, x2, x3, x4, (x5,ys), (x6,y6) 
x~, x~, x,, x~, (y~,-x~), (y~,-x~) 
X4' X3' X2' X l '  (Y6 ' - -X6) '  ( Y 5 ' - - X 5 )  
x 3, x 4, x l, x 2, (x~,y~), (xs,ys) 
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Cubic point groups 

Laue  class T 

/ ' I (XI)  Rtl)(x3,Y3) l"(41)(x4,Y4, Z4) 

T(2~3) 
Odd 

e gx + g2 + g3 
[gt = g2 =-g3] 

d14 + d25 + d36 
[dl4 = d25 = d36] 

[g3 - a ( g ,  + gO,  b (g l  - g2)l 

[b(dl4 - d25),a(d14 + d25) - d36] 

(PvP2,P3) (g4,gs,g6) 
(du, d22,dss) 
(d13,d2,,d32) (d,2,d23,d31) 
(d35,d16,d24) (d26,ds4,dls) 

Even U 1 + U 2 + U 3 
[U 1 = U 2 = U 3] 

$11 + $22 + $33 
$23 4. S13 + $12 
S44 + "$55 -t- $66 
[Sll ~ $22 = $33~.$23 ~--- $13 ~ S12"J 

$44 = $55 ~ $66] 

A 1 4 + A 2 5 + A 3 6  
[A 14 = A 25 = A36] 
q23 + q3t + q]2 
[q23 : q31 = q12] 

[ U  3 - -  a ( u l  + u2) ,b(u ,  - u2)l (u , ,us ,  u6) 

[S33 --  a(Sn + s22),b($11 - s22)1 
[$12 --  a($23 + s13),b($23 - s13)1 
[S66 -- a(S44 + S55), b(s44 -- s55)] 

s 14~. $25~ $36)* 
(834,s15,s26)* (s24,s35,s26)* 
($56, $46, $45)* 

(A ll,A22,A33) 
[b(A t4 - A25), a(A 14 "1- A25 ) - -  A36] (~113,A21,A3z) (A 12,A23,A 31) 

(A 35,A 16,A 24) (A 26,A 34,A 15) 
[b(q23 --  q31),a(q23 + q31) - -  q12] 

T(2z3) 
Xl, (x3,Y3), (x4,w4,z4) 
A, E,  T 

Laue class O 

r,(x,) F2(x2)  R t l ) (xs ,y3)  F~41)(x4,Y4, z , )  r~ ' (xs ,ys ,  zs) 

O (4z 32.y) t g l  + g2 + g3 
[gl = g2 : g3] 

d14 + d25 + d36 

[g3 -- a(gl + g2), (g4,gs, g6) 
b(g, -g2) l  

(d13 - d12,d21 - d23 , 
d32 - d31 ) 

[b(d14 - d25),a(d14 + d25) (d35 - d26,d16 - d34 , 
- d36 ]  d24 - dis  ) 

(PvP2,P3) 

(dl  1, d22, d33) 
(d13 + d12,d21 + d2s, 

d32 + d.) 
(d35 + d26,d16 + d34, 

d24 + dis) 

T a (4~3m~) 

dl  4 +  d 2 5 + d 3 6  

[d14 = d25 = d36] 

8 g t + g 2 + g 3  [b(gl - g2),a(g, + g2) (P,,P2,P3) 
--g,] 

(g4 'gs 'g6)  

(dl I, dz2, d33) 
(d13 + d12,d21 + d23, (d13 - d12,d21 - d23 , 

d32 -I- d31 ) d32 - d31 ) 
[d36 - a(dl4 + d25), (d35 + d26,d16 + d34, (d35 - d26,d,6 - d34, 

b(dl4  - d25 ) d24 + d t s )  d24 --  dis ) 

Common U 1 + U 2 + u 3 
tU 1 : U 2 ~- U3] 
S11 + S22 q.- $33 

$23 + S13 + $12 

$44 -t'- $55 "+" $66 

[$11 ~--- S22 ~ $33 ~, 
$23 = $13 = $12~ 
544 : S55 -~- S66] 

[U 3 - - a ( u l  + u2), 
b(u, - u2)] 

[s33 - a ( s i i  + $22), 
b(Sll - s22 )] 

[SI2 --  a(s23 + St3), 
b($23 --  S13)] 

[s66 --  a(s44 + s55), 
b($44 --  $55)] 

A14 + A 2 5 + A 3 6  [b(AI4-A25) ,a(A14+ 
A25) - -A36]  

q23 + q31 + q12 [b(q23-q31),a(q23 + q31) 
--q12] 

(U4.~ U5s U 6) 

(S 14' 325~ $36)* 

($34 + s24.Js15 + $35.J 
$26 + $16)* 

(S56, S46, S45) 

(AI3--AI2,A21 - A 2 3 ,  
A32- -A31)  

(A35 - -A26,A16 - A 3 4 ,  
A 2 4 - A I s )  

$34 --  $24 s $15 --  $35. ~ 

(A II,A22,A33) 
(A13 + A 12,A21 + A23, 

A32 + A31) . 
(A35 + A26,A!6 + A34, 

A24 + A15) 
(q56, q64, q45) 

X 1, X2, (X3,Y3), (X4,Y4,Z4), (Xs,Ys,Zs), 
O (%32.y)  A v A 2, E,  T 2, T l 
T a ( 4 . 3 m ~ )  A 1, A 2, E,  T 2, T 1 

a = ½, b = v ~ / 2  

8[X I, X 2, (x3,Y3), (x4,Y4,Z4), (xS,Y5,ZS)] 
X 1, X2, (x3,Y3), (x4,Y4,Z4), (xS,Ys,ZS) 
X 2, X D (Y3,--X3), (X5,Y5,Z5) ', (x4,Y4,Z4) 
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Abstract 

Four types of static tensors can be distinguished ac- 
cording to their parity with respect to space inversion 
and to time reversal. However, all magnetic point 
groups belonging to the same (oriented) Laue class 
consist, apart from inversions, of the same proper rota- 
tions. Tensors differing only by parities transform 
identically under the same proper rotations; their trans- 
formation properties under different groups of the same 
Laue class may therefore differ only by an additional 
change of sign, which depends on the tensor parity and 
on the way in which inversions are combined with 
proper rotations in a given group. It is shown that, for 
a certain natural choice of typical representations of 
magnetic point groups of the same Laue class, it is 
sufficient to calculate tensorial covariants (symmetry- 
adapted tensorial bases) of even parity with respect to 
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both space inversion and time reversal for the group of 
proper rotations. Tensorial covariants of other parities 
and for other magnetic point groups of the same Laue 
class can then be obtained by the use of a simple con- 
version table and of parity arguments. The scheme 
is illustrated by an example from the Laue class D 4. 

1. Introduction 

In the preceding paper (Kopsk~,, 1979) it has been 
shown how to find tensorial covariants with the help of 
standard tables of Clebsch-Gordan products (Kopsk~, 
1976a, b). Lists of tensorial covariants were also given 
for the 32 crystal point groups and for tensors up to the 
fourth rank describing nonmagnetic properties. 

It is desirable, especially for the purposes of the 
phenomenological phase transition theory, to know 
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